
© 2018 California Institute of Technology. Government sponsorship acknowledged.

Application Software Cybersecurity Scanning

Lyle Barner
Jet Propulsion Laboratory, California Institue of Technology

 lyle.barner@jpl.nasa.gov

Abstract

Scanning software applications for cybersecurity

vulnerabilities is a crucial step is assessing the overall
health of the application, but how can this kind of scan
be performed to give development teams the
information they need to make informed design
decisions? Two pilot cybersecurity scans were
conducted in an attempt to answer this question. A
scanning team composed of various subject matter
experts was established and worked closely with the
development team to perform these scans and capture
metrics throughout the process. These interactions and
metrics indicate that these scans can be performed in
an unobtrusive way and still provide valuable
information to development teams regarding the health
of their application. This work is not definitive in
nature but serves as a foundation for future work.

1. Introduction

Our team’s research began with trying to solve a
very straight-forward question: how can development
teams scan their application for cybersecurity
vulnerabilities and use this information to identify risks
and inform design decisions? Through two pilot
scanning activities, our research team attempted to
answer this very question. In this situation, scanning
involved performing various types of cybersecurity
scans in order to assess the overall cybersecurity health
of the application. This information can then be used
by development teams to construct a risk profile and
inform future design decisions.

In their default configuration, the information
provided by many of the scanning tools does not give
the user any information about assessing risk or
prioritization. Vulnerabilities are returned in the form
of raw information such as location, description, and
supporting information to help users make their own
determination. Users can also import default
prioritizations and risk assessments, but there is always
a manual component involved in this process.

Establishing this process was one of the key aspects of
this effort.

The end goal of this activity was to determine how
these types of scans should be performed and gather
lessons learned along the way. Things like how to
assess severity of findings, how to optimize the
scanning process, and what teams can expect in terms
of resource commitment were all of significant interest
to the research team.

This research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration.

2. Preparation and overview of scanning
process

Preparation for scanning of the target application
was a significant part of the energy required for the
total process. Constructing a steady framework for
performing these scans was necessary to be able to
collect the desired metrics and gather sufficient details
to perform follow-on activities.

Establishing a team for performing scan was the
most immediate need. The scanning team consisted of
following four primary roles: facilitator, tools expert,
cybersecurity export (CSE), and source code expert
(SCE). The facilitator is responsible for managing the
activities of the scan. This person makes sure that all
the experts have the resources they need to complete
the scan and disposition the results. The tools expert is
responsible for setting up the tools, making sure
they’re properly configured, perform the actual scans,
and post-processing any of the results if necessary.
This individual handles all aspects of running the
automated scans. The cybersecurity expert is
responsible for reviewing the results of the findings
from the automated scans as well as performing the
manual scans based on their expert opinion. This will
help to catch any items that may have been too
complex or outside the scope of the automated
scanning tools. Finally, the source code expert is
responsible for working with the cybersecurity expert
to disposition the results of the automated scans.

© 2018 California Institute of Technology. Government sponsorship acknowledged.

Together the source code expert and cybersecurity
expert will assess the severity of the vulnerabilities and
determine which vulnerabilities require a code change.

One of the most crucial parts of this process was
selecting the target application. It was important to find
an application with a development team that was
dedicated to getting an accurate assessment of the
cybersecurity health of their application. Beyond the
interest of the teams, it was also necessary to look for
software applications that presented the right risk
environment to scan for cybersecurity vulnerabilities.
Based on this information, the scanning team
determined that the appropriate application would
likely be a ground software application. Since the
process for performing these scans is not well defined,
it was important to find projects that were willing to
work with the team to capture lessons learned and
metrics to define a more formalized process.

From these loose requirements, two target
applications were identified for scanning. For the
purposes of this paper, these applications will simply
be identified as Project 1 and Project 2. The identity of
the software applications was something that the
scanning team agreed to keep anonymous for security
of the applications. These two pieces of software are
mature ground applications that are currently being
used for mission operations. Both projects are
continually being developed to support better operation
and new or improved functionality and have a
predictable release cycle. Both projects are written in
Java and each contains roughly 30k lines of code. Most
importantly, these teams wanted to understand the
cybersecurity risks present in their application.

Scanning each application was broken down into a
manual investigation by a cybersecurity expert,
automated scanning of the operating environment for
known configuration and third-party software exploits,
and automated scanning of the source code for
common weakness enumerations (CWEs) using a static
analysis tool. [1] The source code scanning was
performed using the COTs static code analysis tool
Semmle for Project 1 and Semmle and CodeSonar for
Project 2. [2][3] For static code analysis scanning the
team decided to target only CWEs found within the
source code as a in order to measure risk. Semmle
supports scanning for 107 different CWEs for Java and
CodeSonar supports scanning for 618 different CWEs
for Java. Scanning of the operating environment was
also performed using Nessus. [4] Nessus performs a
scan of the operating environment and searches for
common misconfigurations and known vulnerabilities
that could be exploited. These automated scans help
ensure that maximum coverage is achieved while using
minimal resources. This level of coverage is crucial for

assessing the cybersecurity risk profile of the
application.

Finally, in addition to scanning with the automated
tools, manual scanning of the source code and the
operating and environment was also performed by a
cybersecurity expert. The expert started by using their
understanding of the functionality of the application
and their own expert opinion to identify potential
attack surfaces that could be exploited. Once these
attack surfaces were identified, the expert manually
reviewed documents and source code to identify any
potential vulnerabilities.

Findings from these three types of scans were then
reviewed by the cybersecurity expert and source code
expert in order to assess the risk presented to the
application. Risk was assessed primarily based on the
potential consequence of an exploitation. There are
many prioritization systems available for assessing
CWE risk, but these were not utilized for this activity.
Prioritization was assigned at the time of review by the
cybersecurity expert and the source code expert. This
risk and prioritization information was then used to
inform design decisions and code fixes that would be
incorporated into upcoming releases.

3. Scanning results

After the installation and setup of the scanning
tools was performed each project was scanned using
the three scanning approaches described in the
previous section. These results were then taken from
the tools and post-processed into a common format but
remained raw in that no findings were removed.

3.1. Static analysis results

The process for performing the static analysis
scanning is fairly straight forward. Once selected, the
tool was configured to scan specifically for CWEs. The
raw information from the tool was then post-processed
into an Excel-based spreadsheet and passed to the
source code expert and the cybersecurity expert for
review. This spreadsheet contains information about
the location of the finding, what CWE it pertains to,
and details of the actual concern. During their review,
the experts assess the validity of the findings and
assign a priority level based on assessment of potential
harm to the system if the vulnerability were exploited.
The prioritization information is then used to merge
cybersecurity specific coding tasks among the other
existing coding tasks.

This analysis was based purely on expert opinion
without adhering to a formal process. The only goal
was to make a determination regarding every finding

© 2018 California Institute of Technology. Government sponsorship acknowledged.

from the static analysis tool. The team observed the
analysis performed by the experts in order to gather
information and identify pain points. This data will be
used to create a more formalized process as part of
follow-on activities. Many of the observations from
this process can be found in the lessons learned
section.

Ideally, static code analysis should be performed at
regular intervals throughout the development lifecycle.
This helps to prevent a large backlog of vulnerabilities
as development proceeds. Both of the projects scanned
during the course of the pilot were very mature and had
been performing these regular scans, but CWE checks
had not been enabled. The recommended course of
action is simply to enable CWE checks as a regular
part of the static code analysis that is already being
performed. While these particular scans were
performed outside of the typical scanning cycle, it is
easy to see how they could be incorporated.

The results of the static analysis scans of Project 1
and Project 2 are shown in the tables and figures
below. These tables and figures contain information
about the raw results as identified by the static code
analysis tools. Full, detailed results will not be
presented in this paper for the sake of brevity. Tables 1
and 2 show the distribution of CWE findings identified
by Semmle. Table 3 shows the results of a CodeSonar
scan that was performed on Project 2 outside of the
regular scanning process due to license availability
issues.

Table 1: Results of Semmle scan of Project 1
CWE Description Count
CWE-022 Improper limitation of a

pathname to a restricted
directory (‘path traversal’)

35

CWE-190 Integer overflow wraparound 3
CWE-129 Improper validation of array

index
1

Table 2: Results of Semmle scan of Project 2

CWE Description Count
CWE-089 48
CWE-022 Improper limitation of a

pathname to a restricted
directory (‘path traversal’)

11

CWE-190 Integer overflow wraparound 7
CWE-311 Missing encryption of

sensitive data
3

CWE-597 Use of wrong operator in
string comparison

3

CWE-129 Improper validation of array
index

2

Table 3: Results of CodeSonar scan of Project 2
CWE Description Count
CWE-252 Unchecked return value 6
CWE-374 Passing mutable objects to an

untrusted method
17

CWE-391 Unchecked error condition 426
CWE-396 Declaration of catch for

generic exception
977

CWE-397 Declaration of throws for
generic exception

677

CWE-398 7PK code quality 2
CWE-456 Missing initialization of a

variable
1

CWE-459 Incomplete cleanup 400
CWE-476 NULL pointer dereference 12
CWE-478 Missing default case in a

switch statement
16

CWE-484 Omitted break statement in
switch

17

CWE-500 Public static field not marked
final

2

CWE-543 Use of singleton pattern
without synchronization in a
multithread context

5

CWE-561 Dead code 28
CWE-563 Assignment to variable

without use
57

CWE-569 Expression issues 1
CWE-571 Expression is always true 2
CWE-581 Object model violation: just

one of equals and hashcode
defined

4

CWE-595 Comparison of object
references instead of object
code

25

CWE-596 Incorrect semantic object
comparison

1

CWE-597 Use of wrong operator in
string comparison

4

CWE-607 Public static final field
references mutable object

2

CWE-662 Improper synchronization 2
CWE-681 Incorrect conversion between

numeric types
6

CWE-682 Incorrect calculation 4
CWE-767 Access to critical private

variable via public method
13

CWE-775 Missing release of file
descriptor or handle after
effective lifetime

2

CWE-845 CERT Java secure coding
section 00 – input validation
and data sanitization

51

CWE-846 CERT Java secure coding 7

© 2018 California Institute of Technology. Government sponsorship acknowledged.

section 01 – declarations and
initializations

CWE-849 CERT Java secure coding
section 04 – object
orientation

11

CWE-851 CERT Java secure coding
section 06 – exceptional
behavior

16

CWE-854 CERT Java secure coding
section 09 – thread APIs

1

In addition to determining the distribution of

findings among the different CWEs, post-processing
was performed to determine the density of the findings
among the source code modules. The results of the
post-processing are shown below in Figure 1 and
Figure 2. In order to protect the identity of the projects,
the names of the modules will remain anonymous.

Figure 1: Distribution of findings among source

code, Project 1

Figure 2: Distribution of findings among source
code modules, Project 2

The results shown in Table 2 and Table 3 are from

the same source code from Project 2, but different
static analysis tools. The primary reason for the much
larger number of findings shown in Table 2 is that
CodeSonar supports a much larger number of CWEs

than Semmle. A comparison between the results from
Semmle and CodeSonar can be seen below in Table 4.

Table 4: CodeSonar and Semmle comparison
 Semmle CodeSonar
Covered CWEs 107 618
Total findings 74 2795
Finding
concurrence

1 instance of partial
concurrence

Of the various CWEs that are covered by both

Semmle and CodeSonar, there are 81 CWEs that are
covered by both tools. Of these 81 common CWEs
there were 17 instance of no concurrence, 63 instances
of potential concurrence, and 1 instance of partial
concurrence. No concurrence is defined as no matching
findings for a given CWE. Potential concurrence is
defined as instances where no findings were identified
by either tool, so it is not possible to make a definitive
judgement on the overlap between the tools. Finally,
partial concurrence is defined as an overlap of at least
one finding for a given CWE. In this particular
analysis, there was only 1 individual finding that was
identified by both tools.

After the scans were performed, the findings were
analyzed by the cybersecurity expert and the source
code expert to determine the validity of the finding and
the risk associated with the finding. The risk
assessment is based purely on the opinion of the
cybersecurity expert and the source code expert.
Assessing risk requires detailed knowledge of the
target application, operating environment, and concept
of operations of the system as a whole. A more
formalized risk categorization process is currently
being developed to assist teams in streamlining the
process for assessing risk.

If this risk is sufficiently high, a code change will
be implemented, and design rules can be cataloged to
help guide future development. Performing a static
analysis scan of the code base before the peer review
helps to focus the energy of the peer reviewers. The
automated scan performed by the static analysis tool
ensures 100% coverage of the source code and the
expert review of the results ensures that the dev team is
provided with actionable information. The result of this
process is a set of prioritized vulnerabilities that
include a high-quality description of the vulnerability
and potentially even details on a fix. These code fixes
can then be inserted directly into the existing
development lifecycle along with other coding tasks.

Figure 3 and Figure 4 below show the number of
findings that were deemed to be valid for each project.
This activity was only performed for the findings
identified via Semmle. The CodeSonar results were not

19, 49%

6, 15%

14, 36% Module 1
Module 2
Other Modules

48, 65%
8, 11%

7, 9%

11, 15%

Module 1
Module 2

Module 3
Other Modules

© 2018 California Institute of Technology. Government sponsorship acknowledged.

generated in time to be included in the metrics
collection process.

Figure 3: Findings validity for Project 1

Figure 4: Findings validity for Project 2

Conveniently, the static analysis tools provided all

of the information that is needed to make a risk
assessment for a given vulnerability. For example, the
Semmle results provide users with the exact line of
code that is of concern, a description of the problem,
and even a generic discussion of how this type of
vulnerability is usually addressed. The only difficulty
associated with making a determination is marrying
this data up with other controls that may or may not
exist in the operating environment. This is where the
knowledge of the source code expert is crucial.

3.2. Expert review and Nessus scan results

The process for performing a scan of the operating
environment was quite similar to the process for
performing the static analysis scan. First, the tools and
documents of interest were identified. Once this
information was obtained, the automated scan was
performed and the manual review by the cybersecurity
expert was also conducted. This information was then
manually organized and reviewed by the cybersecurity
expert and source code expert simultaneously. Finally,
the experts made a determination regarding every

finding and assigned a priority level based on expert
opinion. Again, the process for performing the scan of
the operating environment was left intentionally vague
and was reviewed closely by the team to capture
lessons learned for follow on activities.

Similar to the static code analysis scanning, the
operating environment should ideally be scanned at
regular intervals during the development lifecycle.
Even if there are no changes to the third-party
dependencies of the target application, new
vulnerabilities can arise over time. In many projects
this may or may not be how this type of scanning is
performed and may introduce additional overhead to
the development team. For these particular projects,
this type of scan had been performed in the past, but
not on a regular basis.

The products of the Nessus scan and the manual
expert review were much less formal than the static
analysis results. In many cases, these kinds of findings
did not generate changes to the source beyond what
was already identified by the static analysis tools.
Instead, these findings can be flowed into changes to
the configuration of the operating environment and
procedural changes associated with using the
applications. Additionally, these types of scans did not
generate the same number of findings that were
uncovered by static analysis of the source code. For
these reasons, only a subset of the results will be
shared.

Scanning by the cybersecurity expert revealed
several instances of uncontrolled information contained
within the application documentation. For example,
some documents contained admin login credentials.
This poses a significant risk if used for malicious
purposes. Scanning using Nessus also revealed
configuration issues with Apache Tomcat serve being
used by the applications that would leave the
application susceptible to JDK vulnerabilities.

After the results of the scanning were compiled into
a final report, the cyber security expert is able to
present the findings to the source code expert for
review. Due to the nature of the scan, there is a much
lower false positive rate, so the primary job of the
source code expert is to simply understand the
concerns, and a much lower false positive rate is to be
expected. The results of the Nessus scan may not
capture the all of security controls that are in place on
the system, so this may be where there could be some
false positives. Using the details of the security
controls present to tailor the results proved to be the
most time-consuming part of the process, though the
cost associated with this activity is still reasonable. The
cybersecurity expert must take time to understand these
controls to better tailor their analysis. Again, risk is
assessed based on the expert opinion of the

CWE-022 CWE-190 CWE-129
No Fix Required 32 3 0
Fix Required 3 0 1

0

5

10

15

20

25

30

35

40

CWE-
089

CWE-
022

CWE-
190

CWE-
311

CWE-
597

CWE-
129

No Fix Required 48 3 0 0 0 0
Fix Required 0 8 7 3 3 2

0

10

20

30

40

50

© 2018 California Institute of Technology. Government sponsorship acknowledged.

cybersecurity expert. Follow-on activities will work to
determine a more formalized process for capturing risk
assessments.

3.3. Metrics collected during analysis

During the course of the scanning, analysis, and
dispositioning process the team collected metrics to
better inform future activities. Metrics of concern are
primarily analysis time and metrics distribution per
thousand lines of code, but other metrics were
collected along the way as well. The metrics collected
during these pilot activities are provided below in
Table 5 and Table 6.

As can be seen the following Tables, there was very
little cost associated with performing these types of
scans. For two mature software projects, it took less
than 15 hours to perform the scans and disposition the
results. The analysis cost can be broken down into
three major categories: tools setup, source code expert
analysis, and cybersecurity expert analysis. Tools setup
encompasses setting up the analysis tools, running the
analysis, and post-processing the results. For Project 2,
the slightly higher number of results prompted an
additional analysis activity to have the software lead
organize the analysis into larger categories for the
source code expert and cybersecurity expert to review.
Nearly all of these analysis categories can see
improvement with a more well-defined tool
deployment process and a more formalized review
process. A low-cost process would mean that teams
can easily identify and rectify cybersecurity issue and
improve the overall security of their codebase without
being overly concerned with cost.

While this does not include the time needed to
make the necessary code fixes, it still encompasses a
large portion of the cost. It shows that this type of scan
can be readily performed without having to dedicate
significant resources to the effort. More pilot activities
are needed to better determine the costs associated with
performing this type of scan, but the initial results are
promising.

Table 5: Project 1 analysis metrics
Metric Value
Language Java
Lines of code 24,310
Total findings 39
Finding rate 1.61/thousand lines of code
True defect rate 0.16/thousand lines of code
Findings requiring a
code change

12.5%

Analysis time Tools setup: 5-6 hrs
SCE analysis: 2-3 hrs

CSE analysis: 2 hrs
Total: 9-11 hrs

Table 6: Project 2 analysis metrics

Metric Value
Language Java
Lines of code 36,725
Total findings 74
Finding rate 2.01/thousand lines of code
True defect rate 1.39/thousand lines of code
Findings requiring a
code change

69%

Analysis time Tools setup: 2-3 hrs
Lead analysis: 2-3 hrs
SCE analysis: 4-5 hrs
CSE analysis: 4 hrs
Total: 12-15 hrs

3.4. Observations based on analysis results

There were many pieces of interesting information
that can be gathered from the raw analysis data and the
dispositioning results. Much of this information flows
into the lessons learned that are captured in the
following section, but there is still some information
that is worth mentioning here.

The first piece of information that is apparent is
that these scans can be performed in a relatively short
amount of time, even for mature software applications.
Both pilot activities were completed with the risk
assessment portion of the process in under 15 hours.
This is manageable for most projects, but more scans
are needed to gather more data points.

The team also discovered that the analysis time
does not necessarily scale with the number of findings
that are uncovered. While more warnings generally
could mean that the dispositioning process could take
longer to complete, this is not always the case. For
example, imagine that more warnings are discovered in
third application, but nearly all the warnings are related
to sanitization of user input. This type of finding is
usually dispositioned fairly quickly and may not
increase the dispositioning time noticeably. However,
this will likely increase the time required to implement
the code fixes associated with the true defects.

4. Conclusions and lessons learned

At the conclusion of each scanning process the
team convened to discuss the lessons learned and what
could potentially be improved for future efforts. There
were many lessons learned as part of these pilot
activities, but they roughly follow the different phases

© 2018 California Institute of Technology. Government sponsorship acknowledged.

of the scanning process from setup and installation
though disposition.

4.1. Setup lessons learned

There is relatively little cost associated with
preparing to perform these kinds of scans. The
metrics collected during these pilot activities showed
that the total time to perform analysis was no more
than 15 hours. Of this total time, it took less than 3
hours for a knowledgeable user to set up the various
automated scanning tools and another 2-3 hours to
create the associated post-processing scripts. This cost
can further be reduced as the deployment process is
refined through follow on activities.

When scanning the source code specifically for
cybersecurity vulnerabilities, configuration of the
scanning tools is very important. While these tools
often have utility beyond just scanning for
cybersecurity vulnerabilities, limiting the functionality
can be helpful to focus teams. Static analysis tools can
often generate a lot of false positives which can be
time consuming to disposition. Adding additional noise
through unnecessary queries can make this an even
bigger problem. Make sure to sit down with the team to
determine what are the most effective queries to be run
for the given analysis. Another option for solving this
issue is to create segregated dashboards so that queries
are effectively grouped. The best option would likely
be to have a portion of the development team that is
dedicated to performing these scans, analyzing the
results, establishing the risk, and distributing this
information to other members of the team as necessary.

There is very little overlap between the different
static code analyzers when comparing results
against matching CWEs. It is possible to conclude
from this finding that to truly get the best results users
should run as many static code analyzers as possible
for a given analysis to get the best coverage of the
CWEs. This of course means that more output will be
generated and the analysis time will be increased. To
mitigate this teams should perform these scans
regularly and address the findings frequently to ensure
that the process does not become unmanageable.

The source code, operating environment, and
associated documentation must all be examined as
part of the scanning process. There are different
pieces of information contained in each one of these
domains. It is not sufficient to examine only one area.
Additionally, there are some vulnerabilities that only
present themselves through a combination of more
minor warnings that are distributed among the different
domains.

4.2. Scanning and post-processing lessons
learned

Most of the information needed to perform this
type of analysis is readily available. The scanning
tools provide users with most of the necessary
information for diagnosing vulnerabilities within their
codebase. The risk assessment/prioritization process is
the missing piece that must be addressed in follow-on
activities.

Due to the sensitive nature of the information
contained in the results, special measures must be
taken when sharing the results. The raw results that
are being shared contain information that would
potentially be very valuable to an attacker. Because of
this it makes sense to keep the results in a segregated
area that is protected from more general information
about the codebase. This area should only be accessible
to the minimal set of developers required. Protecting
the results of the scans means that risk items are
protected and vulnerabilities are not revealed to a
larger audience.

The number of vulnerabilities that exist within
the codebase are not based on the number of lines
of code, but instead on the functionality of the code.
It might be reasonable to expect that doubling the
amount of code being scanned would result in double
the amount of vulnerabilities uncovered, but this is not
the case. However, for example, if an application has
more opportunities for user input, or makes use of a
network connection, this codebase will likely have
more vulnerabilities than a similarly sized application
with less user input or no interface with a network
connection. This can make it extremely difficult to
estimate the actual effort associated with performing
this kind of cybersecurity scan. Again, the
recommendations from this lesson learned is to
perform scans regularly so as not to create a large
backlog of findings.

The vulnerabilities are often not evenly
distributed throughout the code. There will be many
modules that have very few or even now cybersecurity
vulnerabilities. Again, this is primarily due to the
architecture and the functionality of the application.
For instance, if there is a particular module in the
application that is responsible for handling user input
this module is likely to have a higher density of the
cybersecurity vulnerabilities than other modules in the
application. If a particular module has a high
distribution of vulnerabilities, this means it may be a
good target for further analysis. It could also mean that
the team may need consider refactoring the module to
better protect the application.

© 2018 California Institute of Technology. Government sponsorship acknowledged.

4.3. Dispositioning lessons learned

Grouping warnings into different categories is
helpful for the dispositioning process. Some
scanning tools can handle this step automatically, but if
not, this is something to be considered. As previously
mentioned, these scanning tools can often generate a
large amount of output. This step can help break this
output down into more manageable tasks that can be
distributed to different members of the development
team. Ultimately this helps to streamline the process of
assessing the risk associated with a finding or set of
findings.

The cybersecurity expert and the source code
expert must work together in order to make a
determination about the validity of finding. Each
finding from the scanning tools can be examined from
the perspective of the cybersecurity expert as well as
the perspective of the source code expert. The
cybersecurity expert may have information about the
finding that can better explain its importance to the
source code developer. Likewise, the source code
developer may have information about the operation of
the application that negates the importance of the
finding. Essentially, they must work together as a team
to come to agreement about the severity of a given
finding. This is true for determining the risk associated
with a given finding. If the common risk assessment
technique is applied (likelihood vs. consequence) the
source code expert can assist in determining the
likelihood of a finding being exploited, while the
cybersecurity expert can speak to the consequence of
the vulnerability being exploited

True positives can be used to create a rolling list
of design rules. As vulnerabilities are uncovered in the
code and fixes are implemented, a database of design
rules can be formulated. These design rules and
patterns can help to reduce the number of
vulnerabilities that are introduced during regular
development activities.

Code fixes are related to the type of finding,
more so than the individual finding. For instance,
let’s assume that the scanning tools flag multiple
findings in the source code that there is potential for
privilege escalation. However, what the scanning tools
are unaware of are any outside protections that would
prevent this kind of escalation. So, in this instance,
none of these findings would be considered to be valid
and it is possible to disposition them all at the same
time. There are some instances where this is not the
case, but during our pilot activities most categories of
findings followed this pattern. This information can be
used to streamline the disposition and risk assessment
process.

A detailed process for prioritizing and assessing
risk associated with vulnerabilities must be created.
This area is where the majority of the analysis time
was spent. Creating a formalized process will drive
down the overall analysis time and is something that
will be addressed in future work.

5. Future work and extensions

This pilot activity was conducted with the intention
of leading into many follow activities. Some of these
activities were known before starting the pilot scans
and helped to shape how the scans were conducted, but
more of these activities were discovered during the
course of the pilot.

The primary follow-on activity is to define a
formalized process for performing these types of
cybersecurity scans. The metrics collected as a part of
the original scans will be used to help inform this
process. This will likely be an iterative activity that
will involve scanning more projects and further
refining the process. The formalized process is
important for ensure teams are performing these scans
in a way that is consistent and repeatable. The team
plans to continue collecting metrics on any additional
scans that occur in order to better understand the
relationship between lines of code, number of findings,
and overall time to complete the analysis. This
information can be very helpful when teams have very
little budget to use and would like to better understand
the commitment that is required to perform this kind of
scan.

In addition to the more formalized process, the
scanning team determined that training and exposure
materials to publicize this activity internally would also
be helpful. Making development teams aware that this
type of scan Is necessary to perform is beneficial on its
own, but this activity has the added benefit of
potentially identifying early adopters that would be
willing to participate in the process of refining the
scanning process. This activity also allows teams to
voice their concerns in a more generic way so that the
team has a chance to address them either in the
formalized process or in future exposure materials or
training activities. The end goal is to provide teams
with a way to incorporate this information into their
development lifecycle by providing them with
information about what aspects of the lifecycle this
kind of scan affects.

One of the most surprising results from this pilot
activity was the lack of overlap between Semmle and
CodeSonar when comparing the results of the CWE
scans. This begs the obvious question of why the
results are so different. Determining which tools

© 2018 California Institute of Technology. Government sponsorship acknowledged.

provide the best results will be important for
maximizing the return on investment for implement
these kinds of scans. The first step in solving this
problem would be to performing a benchmarking
activity. This could be done by running both analyzers
against a source code test suite that contains known
vulnerabilities and then comparing the results of the
tools to see how many false positives are identified and
how many true positives are identified. The are several
open source test suites that could be used for this
purpose. For example, the Juliet test suite is a
collection of artificially injected CWEs for both Java
and C that could be used to perform such a
comparison. This information could then lay the
foundation for future work to judge the effectiveness of
different static code analysis tools for performing
cybersecurity scans.

During the process of analyzing the data from the
various scans the team had some issues managing all
the sources of information. There is an internally
available tool called SCRUB that could potentially be a
good solution to this problem. SCRUB is a peer review
tool that is used to run static analysis tools, post-
process the results, and aggregate the results into a
centralized location for review. [7] Users can also
manually input findings into the SCRUB results if
something is discovered that was no identified by the
automated tools. SCRUB can also be used to link users
back to the source code so they are able to review the
code to make a determination on a particular finding
regarding the risk that it presents to the project.
SCRUB also has the added benefit of allowing
multiple users to review the code and findings
simultaneously and then vote on their resolution. In
this situation, SCRUB could be used by the scanning
team to perform automated scans, collect manual
inputs from cybersecurity experts, and then allow
source developers and cybersecurity experts to review
findings independently while still gathering input from
both sides. This approach serves to streamline the
review process by focusing on only the findings that
have been deemed worthy of debate when making
design decisions. Finally, since SCRUB is already
being used to drive peer reviews, this information
could easily be rolled in to the existing process to
minimize the impact to development teams.

One of the primary pieces of feedback the team
received from the developers on the pilot projects was
that it would be really helpful to have some kind of
mechanism for prioritization of the findings from the
static analysis tools. There are many different methods
of prioritizing these warnings. MITRE maintains
several different prioritization techniques as part of
their CWE list that can be used to ranking the different
findings. Each of these rankings are slightly different

and have different underlying methodologies. NASA
also maintains a yearly ranking of what they consider
to be the top 25 CWEs for both ground and flight
software. This activity should examine the applicability
of these ranking systems and attempt to make a
recommendation as to which ranking system makes the
most sense for these types of scans. Creating an
effective prioritization system will help to streamline
the process for assigning risk to a given finding or set
of findings.

6. Conclusion

At the start of this activity the scanning team was
attempting to gather information about how to best
incorporate cybersecurity scanning into the
development lifecycle in a way that gives teams the
information they need about risks in order to make
informed design decisions.

These scans were performed with a relatively small
amount of effort given the maturity of the projects
being scanned. This indicates that scanning a well-
established project and assessing the risk of the
vulnerabilities discovered is something that could be
done relatively easily by most teams. The necessary
information to assess risk is commonly readily
available and can be combined with the information
provided by the scanning tools to make an effective
determination. Beyond the metrics collected, there
were many lessons learned from this pilot process
regarding how to best perform these kinds of scans and
present this information to teams for decision making
purposes.

Future work is needed to better understand the best
way to implement these scans on a large scale.
Creating a formalized process that is able merge into
existing process will require further research, but these
pilot scans have served their purpose as a proof of
concept. Benchmarking the different static analysis
tools is likely a required step before rolling out these
kinds of scans on a large scale. The use of facilitating
tools could help to streamline the review and risk
assessment process. A prioritization methodology
would also be helpful for objectively assessing risk and
presenting teams with consistent data for making
design decisions.

Ultimately, this work will be continued with the
end goal of creating a formal process and a stable set of
tools for performing these kinds of scans

7. References

[1] MITRE, “About CWE”, Website, MITRE, March 2018,
Retrieved from https://cwe.mitre.org/about/index.html.

© 2018 California Institute of Technology. Government sponsorship acknowledged.

[2] Semmle, “Engineering Analytics”, Website, Semmle,
2018, Retrieved from https://semmle.com/products/.

[3] GrammaTech, “Product Datasheet”, Website,
GrammaTech, 2018, Retrieved from
https://www.grammatech.com/sites/default/files/codesonar-
datasheet.pdf.

[4] Tenable, “Nessus Professional”, Website, Tenable, Dec
2017, Retrieved from http://info.tenable.com/rs/934-XQB-
568/images/NessusPro__DS__EN_v8.pdf.

[5] Holzmann, G.J., “SCRUB: a tool for code reviews”,
Website, Jet Propulsion Laboratory, 2009, Retrieved from
http://spinroot.com/gerard/pdf/ScrubPaper_r

